

Capabilities Applicable to SBLRD

- Pointing Control (ATP)
 - Inertial Pseudo Star Reference Unit (IPSRU)
 - Precision Pointing Test Facility
 - Enhanced Angle Sensor
- Inertial Sensors
 - Low Noise Third Generation Gyro (LNTGG)
 - Strategic Grade IFOG
- Active Vibration Isolation System (AVIS)
 - Broadband Isolation for large (100 inch) flexible telescope
- Beam Control
 - LODE Beam pointing/jitter control system analysis
 - DEWATP Pointing and wavefront control modeling & design
- Wavefront Control
 - LAMP detailed analysis of wavefront control system
 - ABCS Analysis and design of jitter and wavefront control system
- Integrated Structural/Optical Models and Design Tools
 - Modeling tool integrates NASTRAN, COMP(Optical Modeling), & SIMULINK
 - Custom MATLAB Controls Toolbox for Design & Real-Time Implementation

Draper Lab Policies

- An independent, not-for-profit corporation dedicated to applied research, engineering development, education, and technology transfer
 - Focus on the design and development of first-of-a-kind systems
 - Does not compete with industry
 - Typically engages in contracts on a sole source CPFF basis
- Draper will team with prime contractors on a non-exclusive basis
 - Will protect proprietary information
 - Will develop independent, compartmentalized proposal teams if required
 - Teaming agreements will be required to protect the interests of both the Laboratory and the Prime Contractor

IPSRU Overview

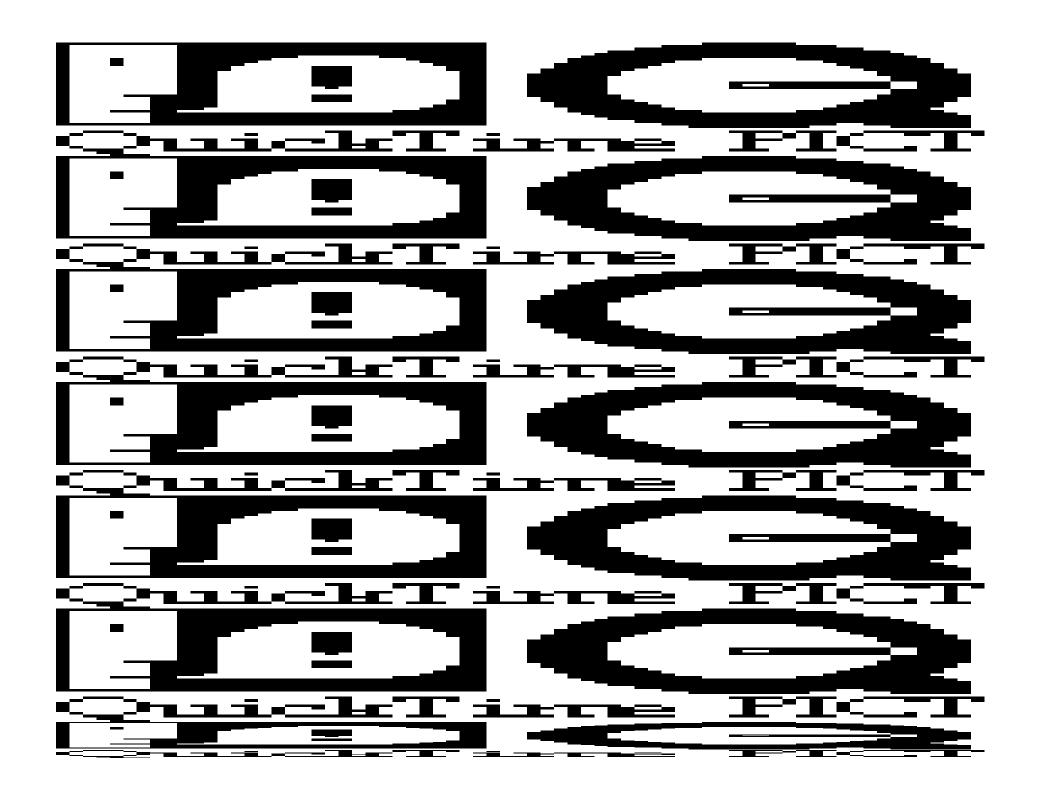
- IPSRU is a Precision Pointing, Tracking and Jitter Stabilization Reference Unit
 - It outputs a collimated probe beam, a pseudo star from a two-degree-offreedom inertially stabilized platform
 - The pseudo star serves as a master reference for jitter stabilizing imaging and weapon pointing systems
- The IPSRU system is also a self-contained 3-axis inertial attitude measurement system (2nd Gyro mounted on IPSRU base)
- A flight-worthy IPSRU system has been built by Draper Laboratory and was delivered (March 1994) to Phillips Laboratory for Integration into the High Altitude Balloon Experiment (HABE)
- IPSRU Measures Performance:

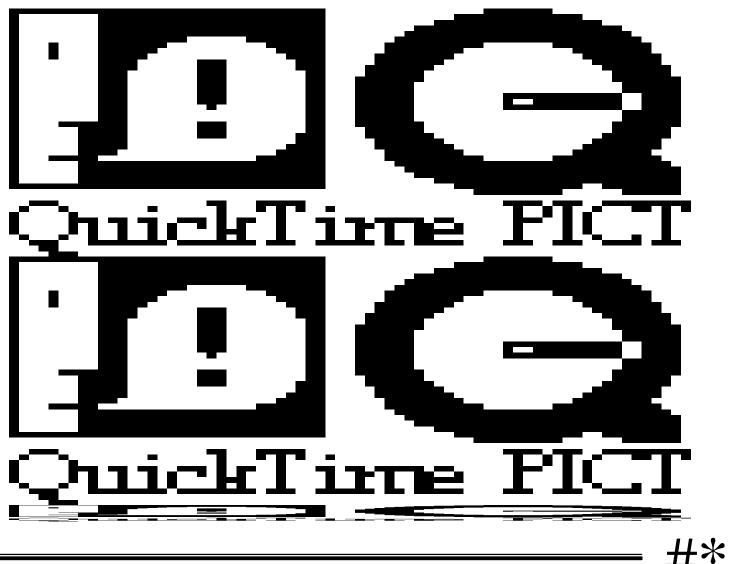
• Beam Jitter 34 nanoradians rms 0.1 - 300Hz

Base Motion Isolation
110 dB at 0.1 Hz
55 dB 1 to 100 Hz

IPSRU Functional Schematic

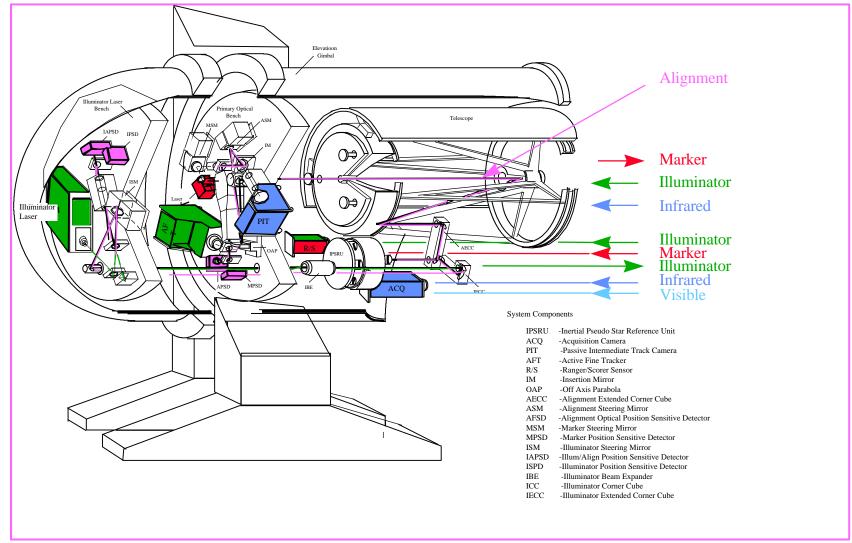
IPSRU Functional Capabilities


- Inertially Stabilized Reference Beam
 - Gyro and ADS information combined through blending filter to actively stabilize the IPSRU platform over a wide bandwidth
 - 34 nRad, 0.1-300Hz
- Spacecraft Inertial Attitude Reference
 - Platform gyro, base-to-platform position sensors, and base gyro measurements used to provide precise knowledge of base inertial attitude
 - Bias Drift < 4x10-3 deg/h
 - Resolution < 2.5 micro-rad
- Target Track and Slew Mode
 - Tracking sensor commands are fed to the IPSRU gyros to move the probe beam Los in inertial space to follow-target motion and/or point ahead as required
 - Output from IPSRU platform sensors is fed to S/C attitude controllers in a follow-up mode, 5°/s & 10°/s²


IPSRU Design Features

- Composite, wide-band, low-noise inertial sensing is provided by a dynamically-tuned two-degree-of-freedom gyro (DTG) and two Angular Displacement Sensors (ADS)
- A central hinge provides two axes of rotational freedom, rotational flexure spring rates are soft and the translational suspension is stiff
- Four linear force actuators and servo loops provide two axes of control
- A second gyro (DTG) mounted on the base provides the third axis of attitude information
- The optical light source wavelength (780 nm) is modular, easily changed
- System electronics are mounted on printed circuit boards and housed in a ruggedized VME ATR unit
- IPSRU has a dedicated processor and software for system control, calibration, compensation and attitude algorithm
- IPSRU has the flexibility to accommodate accelerometer data

IPSRU Application Concept



IPSRU Implementation In HABE

(Optical Canister Schematic)

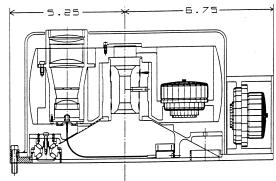
Air Force Research Laboratory Space Vehicles Directorate

IPSRU Modifications for SBLRD

- Repackage Electronics Assembly for space application
 - Conduction cooled chassis
 - Current electronics are a space qualifiable design using 883 B parts
 - Space qualified replacements are available
 - Assessment of radiation issues
- Increase slew rate capability to 15 deg/s via electronic modifications
- Replace SCRAMNET I/O with applicable SBL system I/O
- Modify software to adapt to SBL system I/O and moding/calibration procedures
- Reconstitute test facilities
- Complete documentation of software and operations manual
- Retest and requalify system

IP	SRU Requirements*	Req / Results		
•	Reference Stabilization			
	_ littor (1-Δvis RMS) nrad	100 / 39		

> 80 / 88
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
> 40 / 45
10 / 10
2 / 2*
1.15 / 1.15*


• Attitude Knowledge

- Attitude Error, ded/nr	_	Attitude Error, deg/hr	0.06 / 0.05
--------------------------	---	------------------------	-------------

Optical

- P 1.04.					
_	Wavelength, nm	780	1	780	
_	Collimation, waves (P-V)	1/4	1	1/4	
_	Quality, waves (P-V)	1/13	1	1/13	
_	Laser Power, mW	6	1	6	

^{5.25}

#*

^{*} Capability 5 deg/sec and 10 deg/sec²

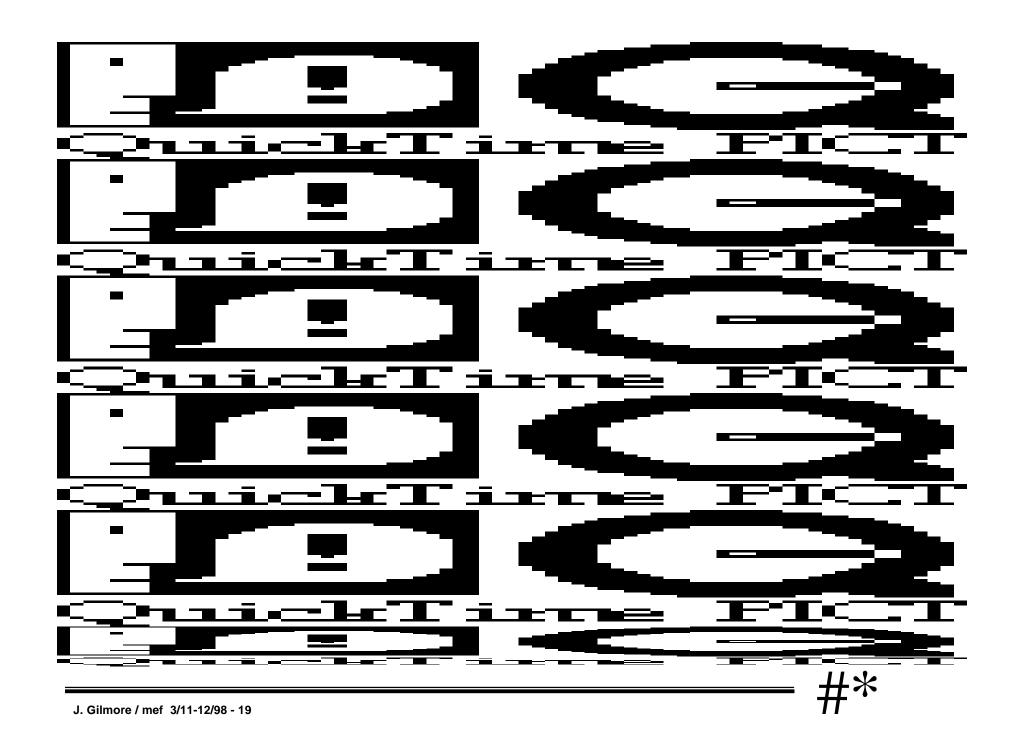
IPSRU Measured Error Allocation (Using Gyro S/N 266, Y-Axis)

Jitter Performance Measurement

Base Motion Isolation Transfer Function

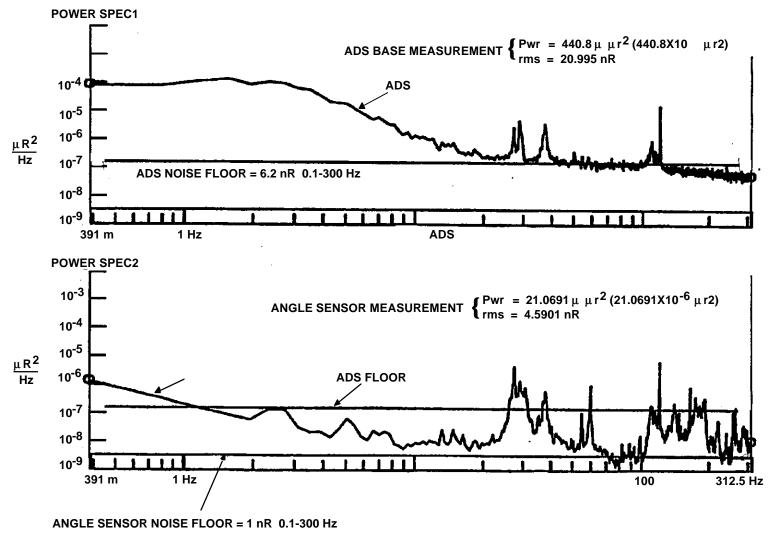
Precision Pointing Test Facility

- Quiet Reference Base for Mounting Scoring Sensors
 - 9000 lb. granite block on 150,000 lb. vibration isolated concrete pier
 - <9 nrad rms, 0.1 300 Hz
- Low Noise Sensors (custom developed at Draper)
 - Enhanced Angle Sensor (quad-type) measures angle of IPSRU beam
 - <2 nrad rms, 0.1 300 Hz</p>
 - Enhanced Resolution Laser Interferometer measures angle of platform
 - 6.8 nrad/bit, +/- 2 degree range dynamic range: 5 x 10 ⁶
- Real-Time Performance Testing
 - Vehicle Simulator (Three-Axis Rate Table) applied base disturbance to IPSRU and performed follow-up function for large angle maneuvers
 - Vacuum/thermal chamber simulated satellite dynamic disturbance environment
- Data Acquisition System
 - High bandwidth LOS data and attitude determination data



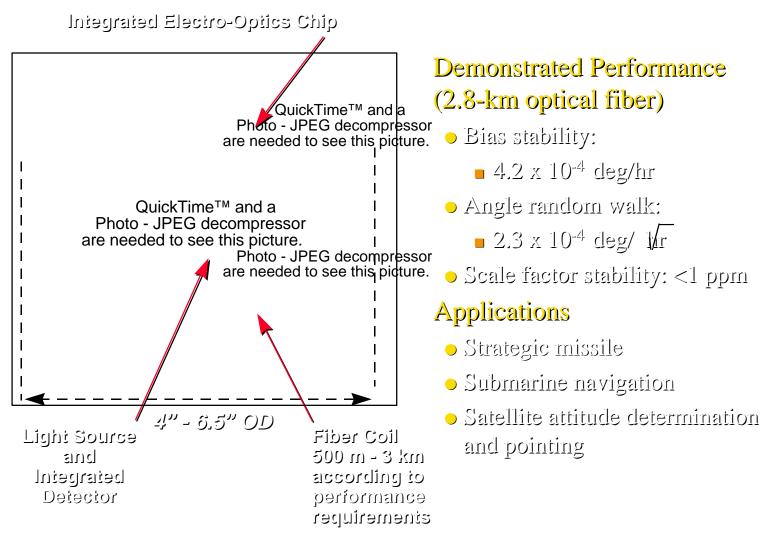
IPSRU System Test Configuration

Integrated Test Facility Layout



Angle Sensor Test Verification

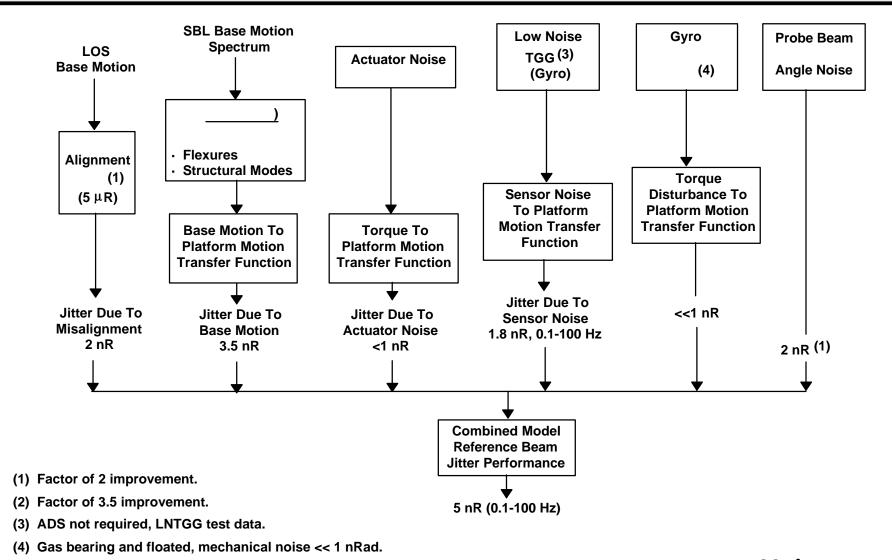
Angle Sensor Measurement Performance


Enhanced IPSRU

- In response to an SMC inquiry Draper Laboratory has investigated the possibility of achieving 5 nRad, 0.1-300 Hz jitter performance
- The primary jitter performance limitation has been the Gyroscope⁽¹⁾ (noise& bandwidth of the DTG, wheel speed)
 - 28 nRad rms 0.1-100Hz, wheel speed -240 rps
- An enhanced higher performance IPSRU can be realized:
 - Use of Draper low noise third generation gyro⁽²⁾
 - 1.8 nRad Rms, 0.1-100 Hz, wheel speed-800 rps
 - Draper's interferometric high performance fiber optic gyroscope is also being assessed as a candidate
 - Higher gyro bandwidth enables wider band platform servo with increased base motion rejection
 - ADS may not be required
 - (1) Delivered IPSRU required an ADS implementation & composite filter.
 - (2) Gas Bearing gyro mechanical noise is insignificant.

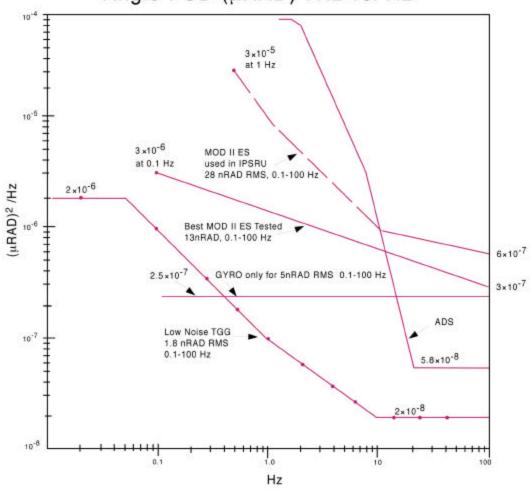
Interferometric Fiber-Optic Gyroscope

Closed-loop-optical-gyroseopes-for-precise-angular-rate-sensing

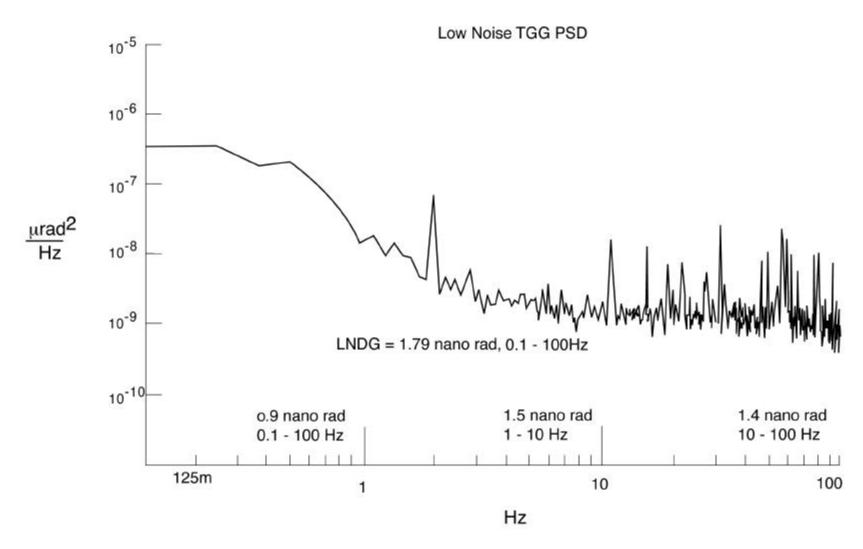


Low Noise Third Generation Gyro History/Reliability

- Low Noise Third Generation Gyro (LNTGG) is a derivative of Draper's Third Generation Gyro (TGG) which flew on MIT Lincoln Laboratory Experimental Satellites (LES-8 and 9) and is in Peacekeeper IMUs
 - LNTGG noise reduction has been realized via the development of an ultra low noise signal generator
- LES-8 gyro package accumulated over 40,000 hours prior to being deactivated in 1983
 - It was reactivated after 7 years at -36°F and operated successfully (no change in performance) for five months before being deactivated
- Peacekeeper production TGGs since 1993 have accumulated 8.4 million silo hours* producing an MTBF = 310,000 hours. (Several units have in excess of 51,000 hours of continuous operation)
- Radiation capabilities exceed space environment requirements



High Precision IPSRU Projections Using Low Noise - 4th Generation TGG


Angle PSD (µRad)² /HZ vs Hz

Low Noise TGG PSD

Conclusion

- Draper has a broad range of technologies, tools, and expertise applicable to the SBLRD
 - IPSRU is a unique, self-contained system that has demonstrated precision pointing, LOS jitter elimination, and attitude reference performance levels required for the SBLRD
 - Draper has also developed several other stabilization and alignment reference concepts with both higher and lower cost/performance goals
 - Draper has unique inertial precision pointing and jitter evaluation system test capabilities
 - Draper has a broad range of integrated optical and structural control system design and test capabilities
- Draper's expertise is available to both the Air Force and the SBLRD prime contractors on a non-exclusive basis
 - Non-Disclosure Agreements will protect proprietary data

